fUML Activity Diagrams with
RAG-controlled rewriting

A RACR*solution of The TTC 2015
Model Execution Case

Christoff Biirger
christoff.buerger@gmail.com

1 https://github.com/christoff-buerger/racr

TTC 2015 background

8t Transformation Tool Contest

Task: execution of fUML Activity Diagrams.

initial

/input internal : Boolean
local notinternal : Boolean = false

register

! internal

(notinternal =

= true

[internal]

get welcome
package

decision

[notinternal]

assign to
project
external

)
; add to

\ website)

authorize
payment

merge final

manager manager
interview report

O)
= assign to

\ project)

join

J

8t Transformation Tool Contest

2. The action register consumes the token c1, executes the defined expression leading to an update of the variable non-internal,
creates the control token c2, and offers it to the decision node decision. 6. The action assign to project consumes its token offer for c4 leading to an update of c4’s remaining offers count to 1, produces
 Trotint | = fal N ~N the control token c5, and offers it to the join node join.
notinternal =false’ _ c2, holder = register [notinternal] - ~N
register assign to thori [notinternal]
. . authorize i i
(notinternal = project register assign to authorize
N ayment (notinternal = roject
- ! internal . external merge P X proj payment
initial 8 decision final external V!
[internal] initial decisi merge final
al ecision c4, holder = fork, baseToken = 3, ina
add to | .remainingOffersCounl =1
! website add t,° l
get welcome manager manager website
package interview report . N
package interview report
fork join
N /.)
3. The decision node decision offers the control token c2 to the opaque action get welcome package, because the variable internal - ¢85, holder = assign to J/
defined as guard condition has the current value true. 7. The action add to website consumes its token offer for c4 leading to an update of c4’s remaining offers count to 0, which in turn
~N leads to the withdrawal of c4 (holder is set to null). Furthermore, it produces the control token c6, and offers it to the join node.

s

[notinternal]

[notinternal]

assign to
project

assign to
project

register
(notinternal =

register
(notinternal =

authorize
payment

authorize
payment

- !internal . external)
initial finternal] decision merge final A . external merge |
: ernal initial decision c4, holder = null, baseToken = c3, final
c2, holder = decision dd t | ‘ remainingOffersCount = 0
add to
website add t.o l
get welcome manager manager website
package interview report c6, holder = add to) :
assign to package interview report
project > assign to
fork join project ioi
- J join
" - holder = assi
4. The action get welcome package consumes the control token c2, produces the control token ¢3, and offers it to the fork node. \ — — - - - 5. holder = assign (,0 " -
N 8. The join node join offers the incoming tokens c6 and c7 via one offer to the action interview.

Vs
-

notinternal
) 1 [notinternal]

assign to
project

assign to
project

register
(notinternal =

register
(notinternal =

authorize
payment

authorize
payment

. ! internal - external merge X
initial 8 decision final !internal external
[internal] initial 4 decision merge final
[internal]
add to
. | add to 6, holder = join |
website i
get welcome manager manager website
. h get welcome
package interview report .)
package interview report
3, holder = get welc project > assign to o5, holder = join
fork join j L
N J fork project join
5. The fork node fork produces the forked token c4 for the incoming control token c3 (i.e., the forked token’s base token). The B\Th - — - h Ttok Sand 6. " h Itoken ¢7, and offersi h -
remaining offers count is set to 2, because the fork node has two outgoing control flow edges. The forked token c4 is offered to - The action manager interview consumes the control tokens ¢5 and ¢6, produces the control token c7, and offers it to the action
the successor actions via two distinct offers. manager report. ~N
([notinternal]) register roterall assign to
register assign to . i
,9 B g authorize (notinternal = project authorize
(notinternal = project N payment
external merge payment initial !internal Yecision external merge final
initial finternal] | 98CiSION "G holder = fork baseToken = c3, final [internal]
@ remainingOffersCount =2
add to | ad: !Ct) c7, holder = manager i |
website website
manager manager get welicome X h
package interview report package assign to interview report
assign to g
3, holder = nul;ork project project
J N J

RACR solution background

General solution idea

Interpreter consisting of two parts ...
— Activity Diagram - Petri net compiler (analyses)
— Petri net interpreter (state transformations)

... Implemented using RAG-controlled rewriting.

RAG-controlled rewriting

* RAG-controlled rewriting = RAGs + graph rewriting

— reference attribute grammar for declarative analyses

* reference attributes induce semantic overlay graph on top of
abstract syntax tree (AST) >> extend AST to ASG

* enables deduction and analyses of graph structure
>> deduced, memoized abstract syntax graph (ASG)

— graph rewriting for declarative ASG transformations
 |eft hand: ASG pattern (ASTs connected via reference attributes)

* right hand: manipulations on matched, underlying AST
>> ASG changes with AST (updated by RAG)

— seamless combination:
* use of analyses to deduce rewrites

* rewrites automatically update analyses
>> incremental

mutual control

RACR

* reference implementation of RAG-controlled
rewriting in Scheme

* R6RS library; API for:
— ASG schema definition (AST schema + attribution)
— ASG querying (AST + attributes)

— rewriting (imperative/RAG-controlled/fixpoint;
primitive/pattern-based; or combination of all)

https://github.com/christoff-buerger/racr

Solution

fUML Activity Diagram compiler

e attributes for:

— name analysis (symbolic name resolution)

* incoming & outgoing edges reference attributes
* variables
— type analysis (expression types)
— well-formedness analysis (only TTC solution that
rejects malformed diagrams)

— code generation (i.e., Petri net generation)

fUML Activity Diagram —> Petri net

fUML Activity Diagram —> Petri net

oe

® &

Yo

5

Petri net interpreter

e attributes for:
— name analysis
— well-formedness analysis
— enabled analysis (kind of name analysis)

* rewrites for execution (firing) e

— delete consumed tokens
— add produced tokens

Abstract syntax graph

initial tree derived Petri net
(original input diagram) :

o petrinet _
activity » Petri net
incoming :

s A e A/__\ I > N s N
variable edge —[node }p ac;e —| place transition
& J - J : J »\ J
(, A () outgoing \ — ()
\ variable) \ edge J* transitigns transition
A L N J
(1\ (1\ plac'e 4’(2\ 4 . N\
edge node place transition

e A e ’f)
edge node plage place OUtL@

- J _, J : L)

enabled

— trar%sitions In

v-lookup

semantic overlay graph (excerpt): M name analysis HM code generation M enabled analysis

Execution (RAG-controlled rewriting)

initial tree
(original input diagram)

derived Petri net

o petrinet _
activity » Petri net
incoming
e A e A/__\ I > N s N
variable edge —[node }p ac;e —| place transition
& J - J . J »\ J
o) () outgoing \ I token ||| e)
| variable | | edge |9 transitigns yroduce! N transition
A - . J
(1\ () plac:e 4’(2\ 4 . N
edge node place transition
) R) : > | fire!
edge node pIac%e place Ut arcs
N \)trar;sitions \) n
expr. | — token |« blod
consume! enable
v-lookup

semantic overlay graph (excerpt): M name analysis HM code generation M enabled analysis

Execution (RAG-controlled rewriting)

derived Petri net

initial tree
(original input diagram)

. petrinet o petri disable/enable
activity . etri net (automatic by
. . incremental
incoming ; :
— I~ > evaluation)
variable edge —[node }placge —[place transition
& J - J : J »\ J
o) () outgoing \ I token || 0 y
variable edge | transitigns transition
—a - g enabled —— g
(1\ (\plac'e 4’(N\ 4 . N\
edge node place transition
edge node |P'9¢ olace arcs
I e — - - in
transitions
expr. |
v-lookup

semantic overlay graph (excerpt): M name analysis HM code generation M enabled analysis

Evaluation

Implementation quality

straightforward rewriting thanks to attribute-
based analysis (rewrites leverage on analyses)

focused rewriting (just actual state changes)
efficient, although naively specified (incremental)

declarative (automatic deduction of evaluation
orders for intertwined analyses & rewriting)

interactive (convenient runtime API for user-
driven analyses & state changes)

Lines of code

Source code file Solution part (language task) LOC
Activity Diagram interpreter (584): 548

analyses.scm: 308 AST scheme 16 3%

ASG accessors (constructors, child & attribute accessors) 89 16%

Name analysis 36 7%

Type analysis 21 4%

Well-formedness 30 5%

Petri net generation 94 17%

parser.scm: 234 Parsing 229 42%

user-interface.scm: 42 Initialisation & command-line interface 33 6%
Petri net interpreter (243): 222

analyses.scm: /34 AST scheme 6 3%

ASG accessors (constructors, child & attribute accessors) 34 15%

Query support 12 5%

Name analysis 19 9%

Well-formedness 12 5%

Enabled analysis 38 17%

user-interface.scm: 109 Initialisation and Petri net syntax 32 15%

Running and firing interface 14 6%

Read-eval-print-loop interpreter 23 10%

Testing (marking & enabled status) 32 15%

no further software artefacts

Performance

Tasks performed Test case Time spent

(later include previous) 1 2 3.1 3.2 (low / high / average)
Activity diagram parsing 7627762 763 /763 7971797 641 /641 45% 1 92% I 53%
Activity diagram well-formedness 859/97 869 / 106 983/ 186 643 /2 0% /11% | 7%
Petri net generation 973/114 989 /120 1125/ 142 647/ 4 1% 1 8% | 7%
Petri net well-formedness 1141/ 168 1158 /169 1296/ 171 655/8 1% 1/ 11% / 9%
Petri net enabled 1167 /26 1185/27 1376 / 80 656/ 1 0% / 5% 1 2%
Petri net execution... 1617 /450 15557370 1768 /392 699 /43 6% 1 28% 1 22%
...using enabled passes 2274 /1107 1229/ 44 1462 / 86 7181762 4% 1 49% [23%

Incremental savings (enabled analyses not cached) (low / higfl_/ average)

Petri net execution... 9894 / 8727 8171/6986 8707/7331 916/260 :"éé% /195% / 950/:;"_
...using enabled passes 18889 /17722 1536/ 351 1818 /442 1057 /401 "~,81% 194% 193% ,o*

execution times in ms
(cf. solution description) time saved by

incremental
evaluation

Conclusion

8" Transformation Tool Contest

A TTC 2015 My

Contest Award

This document certifies that the
award for

THe Overdr, CbeATY RARD FIR

THeE oe. EXeguTion OASE SRPY

has been won by
RACR

Participating team members:

ChrisiorE BOREGER

Location: £’ Aquila, Italy
Date: 24.07.2015
Organizing Committee:
Tassilo Horn, Filip Krikava, Louis Rose

Benefits of RAG-controlled rewriting

interactiv 1
teractive runtime models

declarative
incremental

. IDEs
meta programming

incremental reasoning
model transformation

Efficient Analyses Efficient Rewriting

Programmed /
RAG Controlled Rewriting

