
fUML	Ac(vity	Diagrams	with	
		RAG-controlled	rewri1ng	
A	RACR	solu1on	of	the	8th	Transforma(on	Tool	Contest	

Christoff	Bürger	(christoff.buerger@gmail.com,	hAps://github.com/christoff-buerger/racr)	

Efficient	rewri1ng	Efficient	analyses	

Programmed	/	
RAG-controlled	rewri1ng	 RACR	

TTC	2015	task:	execu1on	of	fUML	Ac(vity	Diagrams.	

RACR	solu1on:	diagram	to	Petri	net	interpreter,	uses	a	reference	aAribute	grammar	to				
	deduce	memoized	abstract	syntax	graph	well-suited	for	execu1on	by	rewri1ng.	

RAG-controlled	rewri1ng:	declara1ve,	seamless	combina1on	of	reference		aAribute	
	grammars	&	graph	rewri1ng	(RACR:	reference	implementa1on,	Scheme	library).	

•  transforma1on-aware	RAG-based	analyses	(incremental	evalua1on)	
•  analyse-aware	rewrite-based	transforma1ons	(analyses	deduce	rewrites)	 mutual	control	

activity diagram one by one. Control tokens and offers of control tokens are shown in
orange color. Forked tokens and offers of forked tokens are shown in blue color. Up-
dates of important features are also highlighted in color. The execution is shown until
the execution of the action manager interview. The complete trace of the example is as
follows: initial node initial - opaque action register - decision node decision - opaque
action get welcome package - fork node fork - opaque action assign to project - opaque
action add to website - join node join - opaque action manager interview - opaque ac-
tion manager report - merge node merge - opaque action authorize payment - activity
final node final. Please note, that the opaque actions assign to project and add to website
could also be executed in reverse order.

initial

register
(notinternal =

! internal)
decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]

input internal : Boolean
local notinternal : Boolean = false

Fig. 4. Example activity diagram (UML notation)

2.4 Variations

As the presented UML activity diagram language is quite extensive, solution devel-
opers may choose to implement it only partially. We foresee the following three case
variations.

Variant 1: Simple Control Flow. The first variant considers only the following concepts
of the UML activity diagram language: Activity, initial node, activity final node, opaque
action (without expressions), control flow edge. This means that only the operational
semantics of these concepts has to be implemented by solution developers choosing this
case variant. The following runtime concepts have to be implemented for this variant:
Offer, token, control token, trace. We consider this subset of concepts to be the minimal
one that should be implemented by all solution developers.

Variant 2: Complex Control Flow. The second variant considers compared to the first
variant the following additional concepts: Fork node, join node, decision node, merge
node, local Boolean variables, and Boolean values. Only the runtime concept forked to-
ken as well as current values of Boolean variables have to be implemented additionally
compared to the first variant.

initial decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c2, holder = registernotinternal = false

initial decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c1, holder = initial
internal = true, noninternal = false

initial decision

assign to
project
external

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c2, holder = decision

get welcome
package

initial decision

assign to
project
external

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c3, holder = get welc

get welcome
package

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c3, holder = null

c4, holder = fork, baseToken = c3,
remainingOffersCount = 2

assign to
project

add to
website

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c4, holder = fork, baseToken = c3,
remainingOffersCount = 1

c5, holder = assign to

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c6, holder = add to

c5, holder = assign to

c4, holder = null, baseToken = c3,
remainingOffersCount = 0

initial decision

assign to
project
external

get welcome
package

fork join

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c6, holder = join

c5, holder = join

manager
interview

initial decision

assign to
project
external

get welcome
package

fork join

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c7, holder = manager i

manager
interview

manager
report

1. The variables are initialized, the nodes are set as running, the initial node is executed leading to the creation of the control
token c1 offered to the action register.

2. The action register consumes the token c1, executes the defined expression leading to an update of the variable non-internal,
creates the control token c2, and offers it to the decision node decision.

3. The decision node decision offers the control token c2 to the opaque action get welcome package, because the variable internal
defined as guard condition has the current value true.

4. The action get welcome package consumes the control token c2, produces the control token c3, and offers it to the fork node.

5. The fork node fork produces the forked token c4 for the incoming control token c3 (i.e., the forked token’s base token). The
remaining offers count is set to 2, because the fork node has two outgoing control flow edges. The forked token c4 is offered to
the successor actions via two distinct offers.

6. The action assign to project consumes its token offer for c4 leading to an update of c4’s remaining offers count to 1, produces
the control token c5, and offers it to the join node join.

7. The action add to website consumes its token offer for c4 leading to an update of c4’s remaining offers count to 0, which in turn
leads to the withdrawal of c4 (holder is set to null). Furthermore, it produces the control token c6, and offers it to the join node.

8. The join node join offers the incoming tokens c6 and c7 via one offer to the action manager interview.

9. The action manager interview consumes the control tokens c5 and c6, produces the control token c7, and offers it to the action
manager report.

Fig. 6. Visualization of the execution of the example activity diagram (part 2)

=	true	

initial decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c2, holder = registernotinternal = false

initial decision

assign to
project
external

get welcome
package

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c1, holder = initial
internal = true, noninternal = false

initial decision

assign to
project
external

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c2, holder = decision

get welcome
package

initial decision

assign to
project
external

fork

assign to
project

add to
website

join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c3, holder = get welc

get welcome
package

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c4, holder = fork, baseToken = c3,
remainingOffersCount = 1

c5, holder = assign to

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c6, holder = add to

c5, holder = assign to

c4, holder = null, baseToken = c3,
remainingOffersCount = 0

initial decision

assign to
project
external

get welcome
package

fork join

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c6, holder = join

c5, holder = join

manager
interview

initial decision

assign to
project
external

get welcome
package

fork join

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

add to
website

assign to
project

c7, holder = manager i

manager
interview

manager
report

1. The variables are initialized, the nodes are set as running, the initial node is executed leading to the creation of the control
token c1 offered to the action register.

2. The action register consumes the token c1, executes the defined expression leading to an update of the variable non-internal,
creates the control token c2, and offers it to the decision node decision.

3. The decision node decision offers the control token c2 to the opaque action get welcome package, because the variable internal
defined as guard condition has the current value true.

4. The action get welcome package consumes the control token c2, produces the control token c3, and offers it to the fork node.

5. The fork node fork produces the forked token c4 for the incoming control token c3 (i.e., the forked token’s base token). The
remaining offers count is set to 2, because the fork node has two outgoing control flow edges. The forked token c4 is offered to
the successor actions via two distinct offers.

6. The action assign to project consumes its token offer for c4 leading to an update of c4’s remaining offers count to 1, produces
the control token c5, and offers it to the join node join.

7. The action add to website consumes its token offer for c4 leading to an update of c4’s remaining offers count to 0, which in turn
leads to the withdrawal of c4 (holder is set to null). Furthermore, it produces the control token c6, and offers it to the join node.

8. The join node join offers the incoming tokens c6 and c7 via one offer to the action manager interview.

9. The action manager interview consumes the control tokens c5 and c6, produces the control token c7, and offers it to the action
manager report.

initial decision

assign to
project
external

get welcome
package

fork join

manager
interview

manager
report

merge

authorize
payment

final[internal]

[notinternal]
register

(notinternal =
! internal)

c4, holder = fork, baseToken = c3,
remainingOffersCount = 2

assign to
project

add to
website

c3, holder = null

Fig. 5. Visualization of the execution of the example activity diagram (part 1)

Execu)on!(RAGJcontrolled!rewri)ng)!

ac)vity!

variable!

variable!

node!

node!

edge!

edge!

edge!

node!edge!

outgoing!

expr.!

Petri!net!

place!

place!

place!

transi)on!

transi)on!

transi)on!

place!

petrinet!

token!

arcs!

enabled!

in!

vJlookup!

Original%Input%Tree% Derived%Petri%Net%

seman)c!overlay!graph!(excerpt):!"!name!analysis!!""!code!genera)on!!"!enabled!analysis!

transi)ons!

transi)ons!

place!

place!

incoming!

out!

consume!!

produce!!

token!

fire!!

incremental	
enabled	analysis	

memoized,	deduced	
abstract	syntax	graph	

reuse	of	enabled	
analysis	permits	

convenient,	focused	
rewrite	specifica1on	

ASG	

ac1vity	

variable	

variable	

node	

node	

edge	

edge	

edge	

node	edge	

outgoing	

expr.	

Petri	net	

place	

place	

place	

transi1on	

transi1on	

transi1on	

place	

petrinet	

token	

arcs	

enabled	

in	

v-lookup	

derived	Petri	net	

seman1c	overlay	graph	(excerpt):	n	name	analysis		nn	code	genera1on		n	enabled	analysis	

transi1ons	

transi1ons	

place	

place	

incoming	

out	

ini(al	tree	
(original	input	diagram)	

