
Submitted to:
TTC 2015

c© Christoff Bürger
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

fUML Activity Diagrams with RAG-controlled Rewriting
– A RACR Solution of The TTC 2015 Model Execution Case –

Christoff Bürger
christoff.buerger@gmail.com

This paper summarises a RACR solution of The TTC 2015 Model Execution Case. RACR is a
metacompiler library for Scheme. Its most distinguished feature is the seamless combination of
reference attribute grammars and graph rewriting combined with incremental evaluation semantics.
The presented solution sketches how these integrated analyses and rewriting facilities are used
to transform fUML Activity Diagrams to executable Petri nets. Of particular interest are (1) the
exploitation of reference attribute grammar analyses for Petri net generation and (2) the efficient
execution of generated nets based on the incremental evaluation semantics of RACR.

1 Prerequisites and Contents

The following document describes a RACR-based [1] solution of the Model Execution Case [6] of the 8th
Transformation Tool Contest which was part of the Software Technologies: Applications and Foundations
(STAF) conference 2015. It assumes readers are familiar with the contest task (cf. [6]); no further previous
knowledge is required, although a basic understanding of reference attribute grammars [5] and familiarity
with the Scheme programming language [3] will be helpful. The presented solution is part of RACR’s
source code repository at https://github.com/christoff-buerger/racr; a deployed SHARE [8]
demonstrator is provided at https://is.ieis.tue.nl/staff/pvgorp/share/.

The structure of this document is as follows: Section 2 gives a short overview of the solution. It first
presents the implemented analyses in Section 2.1, concluding in a sketch of the intended abstract syntax
graphs used to execute fUML Activity Diagrams [4]. Afterwards, Sections 2.2 sketches the implementation
of execution semantics by means of rewrites reusing the implemented analyses. An evaluation follows in
Section 3. The actual source code is investigated in the appendix; readers are highly encouraged to closely
follow it and consult RACR’s reference manual [1] as required.

2 Solution Overview

The activity diagram interpreter presented in the following is realised in the form of two language
processors. The first analyses the actual activity diagram and its inputs and translates them to a Petri
net [7]. The second executes generated Petri nets – it is a Petri net interpreter.

2.1 RAG-based Analyses: From Activity Diagrams to Petri Nets

Figure 1 sketches the abstract syntax graph of an exemplary activity diagram. Our interpreter is imple-
mented in terms of such graphs; they represent the original input diagram, its current execution state
and analysis results, including static and dynamic analyses like diagram well-formedness or whether
activities are ready for execution. The graph consists of two abstract syntax trees (black and purple nodes
and edges). The black one on the left encodes the actual activity diagram; it is the original input of the

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://github.com/christoff-buerger/racr
https://is.ieis.tue.nl/staff/pvgorp/share/


2 fUML Activity Diagrams with RAG-controlled Rewriting

ASG	
  

ac)vity	
  

variable	
  

variable	
  

node	
  

node	
  

edge	
  

edge	
  

edge	
  

node	
  edge	
  

outgoing	
  

expr.	
  

Petri	
  net	
  

place	
  

place	
  

place	
  

transi)on	
  

transi)on	
  

transi)on	
  

place	
  

petrinet	
  

token	
  

arcs	
  

enabled	
  

in	
  

v-­‐lookup	
  

Original	
  Input	
  Tree	
   Derived	
  Petri	
  Net	
  

seman)c	
  overlay	
  graph	
  (excerpt):	
  n	
  name	
  analysis	
  	
  nn	
  code	
  genera)on	
  	
  n	
  enabled	
  analysis	
  

transi)ons	
  

transi)ons	
  

place	
  

place	
  

incoming	
  

out	
  

Figure 1: Example abstract syntax graph of the activity diagram interpreter c©Christoff Bürger

interpreter1 and constructed by a hand written recursive-decent parser (the parser is straightforward and
not investigated in the following). The purple right tree encodes the Petri net used to execute the diagram;
code generation derives it from the original input tree (blue edges). Name analysis extends both trees
to the actual diagram each represents. In case of the original input tree, it resolves the symbolic names
of activity edges to the target and source activity nodes they refer to, such that each node knows all its
in- and outgoing edges (Original Input Tree, red edges). In case of the derived Petri net, name analysis
resolves the symbolic names of the arcs of transitions to the actual places they refer to (Derived Petri Net,
red edges). Enabled analysis finally associates transitions with the tokens they consume if fired or no
token if disabled (green edges). It just is a special kind of name analysis, searching for consumable tokens
and returning the tokens consumed if a transition is enabled and false if it is disabled.

Everything in Figure 1, except the original input tree encoding the activity diagram, is derived by
the interpreter. The interpreter computes an semantic overlay graph that extends its input tree to a graph
well-suited for digram execution. The required analyses are implemented using RACR’s reference attribute
grammar facilities, each by a set of attributes. Figure 1 shows only an excerpt of the actually implemented
analyses and the resulting abstract syntax graph. The names of reference attributes are labeled next to
the edges they induce; for example, the v-lookup attribute finds the variables the assignee and operands
of expressions refer to. Not shown are non-reference attributes like type and well-formedness analysis,
parts of the code generation, for example for expressions of executable nodes, and minor query-support
analyses like lookup of activity nodes and edges by name.

Important for the development-effort-benchmarks in Section 3 is, that analyses can be interdependent,
fostering reuse and modularisation. RACR’s demand-driven evaluation strategy automatically deduces
correct evaluation orders, easing the implementation of complex or mutually dependent analyses. For
example, code generation can reuse name analysis, execution reuses code generation and the runtime
lookup of tokens (i.e., the name and enabled analyses of Petri nets) reuses the places code generation
generated. From the perspective of a user – whether interpreter or Petri net developer – a common

1Input for the interpreter are textual diagram specifications as given by the tool contest [6]. Parsing such specifications yields
abstract syntax trees like the one labeled Original Input Tree in Figure 1; they satisfy the scheme in Appendix A.1.



Christoff Bürger 3

interface for querying analyse results is provided: abstract syntax graphs as shown in Figure 1. Moreover,
analyses are automatically memoized; deduced abstract syntax tree parts are only re-evaluated if required.

2.2 Rewriting-based Transformations: Incremental Execution of Petri Nets

Given abstract syntax graphs as in Figure 1 and all the deduced analyse results they encode, the specifica-
tion of execution semantics boils down to simple transformations manipulating their tokens. After all,
convenient means to find enabled activity nodes considering the state of execution are already provided
(enabled analysis reasons about the current marking of the generated Petri net). Execution therefore can
be realised by a simple loop that reuses the enabled analysis to find an enabled transition and deletes its
consumed and adds its produced tokens using RACR’s primitive rewrite functions rewrite-delete and
rewrite-add [1]; if no transition is enabled, execution terminates.

Important for the performance-benchmarks in Section 3 are the automatic incremental evaluation
semantics of RACR. When an abstract syntax graph information is queried throughout attribute evaluation,
RACR maintains a dependency to remember that the value of the attribute depends on the queried
information. If an abstract syntax graph information changes, RACR invalidates all attributes transitively
depending on it. The enabled analysis of the Petri net language is no exception since it is implemented
using attributes. It depends on tokens that would be consumed or are missing, including the special case
of tokens encoding variable values. All these dependencies are automatically tracked by RACR, such
that the enabled status of incoming arcs is only re-evaluated if it could be changed by a fired transition,
otherwise the cached is used. Likewise, the enabled status of transitions is only re-evaluated if the enabled
status of any of their incoming arcs was invalidated. For example, if any of the two enabled transitions of
Figure 1 (highlighted green) is fired, the enabled attributes of both are invalidated since each depends
on the token deleted according to firing semantics. Similarly, when a new value is assigned to a variable
via rewrite-terminal (cf. Appendix A.3.2), the enabled status of transitions depending on its value is
re-evaluated, if either, they were enabled or, although all tokens they consume are provided, still were
disabled. Without special implementation efforts, RACR optimises the implemented execution semantics.

The activity diagrams of the tool contest result in very simple and restricted Petri nets with just a
single token type (except tokens encoding variable values; cf. Appendix A.3.2) and at most one token per
place. The developed Petri net language is much more expressive however, supporting coloured, weighted
Petri nets with arbitrary input arc conditions and output computations; it was developed before the tool
contest for more general applications. In case of the tool contest, the restricted type and number of tokens,
and therefore simple enabled decisions, preclude major performance benefits from incremental enabled
analysis. If there are only few tokens and conditions to check, caching the results of such checks does not
pay-off as much as in more complex cases. Of course, the execution semantics could be optimised for such
less expressive nets. For example, the transitions of the Petri nets generated for most activity diagrams
never compete for tokens (this holds for example for all test cases given by the tool contest). In this case,
all enabled transitions can be fired in one pass (enabled pass); only thereafter, for the next iteration of the
execution loop, enabled analysis has to be repeated2. In general however, Petri net transitions can compete
for tokens. For example, in Figure 1 the two enabled transitions highlighted green compete for the same
token; their enabled attributes point to the same token to consume if fired. To fire one of the two enabled
transitions disables the other one.

2Enabled passes still sequentially execute parallel fork branches; they perform no multi threaded execution. They execute one
activity of each active branch in each iteration step instead of a single activity of some active branch.



4 fUML Activity Diagrams with RAG-controlled Rewriting

Source code file Solution part (language task) LOC

Activity Diagram interpreter (584): 548
analyses.scm: 308 AST scheme 16 3%

ASG accessors (constructors, child & attribute accessors) 89 16%
Name analysis 36 7%
Type analysis 21 4%
Well-formedness 30 5%
Petri net generation 94 17%

parser.scm: 234 Parsing 229 42%
user-interface.scm: 42 Initialisation & command-line interface 33 6%

Petri net interpreter (243): 222
analyses.scm: 134 AST scheme 6 3%

ASG accessors (constructors, child & attribute accessors) 34 15%
Query support 12 5%
Name analysis 19 9%
Well-formedness 12 5%
Enabled analysis 38 17%

user-interface.scm: 109 Initialisation and Petri net syntax 32 15%
Running and firing interface 14 6%
Read-eval-print-loop interpreter 23 10%
Testing (marking & enabled status) 32 15%

Figure 2: Solution size (in lines of code, LOC)

3 Evaluation

Development-effort-benchmarks Figure 2 summarises the size of the implementation in terms of lines of
code, excluding empty lines and pure comments. The difference between the size of the solution parts and
their source code files is due to boilerplate code for library imports and exports not being accountable to
any certain task. Also, the abstract syntax graph accessors are boilerplate code that could be generated and
should not be counted. They are mostly one liners to introduce convenient functions for node constructions
and child and attribute querying. For example, in the listings of Appendix A we will write (->target n)

to query the target of an activity edge. RACR provides generic query functions however, such that the
query would be (ast-child ’target n) (cf. reference manual [1, Chapter: Abstract Syntax Trees]). To this
end we specify the abstract syntax graph access function (define (->target n) (ast-child ’target n))

which is obviously boilerplate. Finally, note that the implementation of user interface functionality makes
up huge parts of the implementation (in case of the activity diagram language 48%; for the Petri net
language 46%). To develop language user interfaces is not subject of RACR however; input parsing and
abstract syntax tree instantiation therefore should also be excluded.
Performance-benchmarks Figure 3 presents the results of benchmarking the performance test cases
given by the tool contest. The benchmarks have been executed on a MacBook Air (Mid 2011) with a
1.7GHz Intel Core i5 CPU, 4GB 1333MHz DDR3 RAM and Mac OS 10.11.5. As Scheme system Larceny
0.98 (General Ripper)3 was used. Times were measured using the time command of UNIX without
warming up the Larceny virtual machine just by execution from Bash. Each test case was performed with
increasing numbers of translation tasks, such that the actual times spent for parsing, well-formedness

3http://www.larcenists.org and https://github.com/larcenists/larceny

http://www.larcenists.org
https://github.com/larcenists/larceny


Christoff Bürger 5

Tasks performed Test case Time spent
(later include previous) 1 2 3 1 3 2 (low / high / average)

Activity diagram parsing 762 / 762 763 / 763 797 / 797 641 / 641 45% / 92% / 53%
Activity diagram well-formedness 859 / 97 869 / 106 983 / 186 643 / 2 0% / 11% / 7%
Petri net generation 973 / 114 989 / 120 1125 / 142 647 / 4 1% / 8% / 7%
Petri net well-formedness 1141 / 168 1158 / 169 1296 / 171 655 / 8 1% / 11% / 9%
Petri net enabled 1167 / 26 1185 / 27 1376 / 80 656 / 1 0% / 5% / 2%
Petri net execution... 1617 / 450 1555 / 370 1768 / 392 699 / 43 6% / 28% / 22%
...using enabled passes 2274 / 1107 1229 / 44 1462 / 86 718 / 62 4% / 49% / 23%

Incremental savings (enabled analyses not cached) (low / high / average)

Petri net execution... 9894 / 8727 8171 / 6986 8707 / 7331 916 / 260 83% / 95% / 95%
...using enabled passes 18889 / 17722 1536 / 351 1818 / 442 1057 / 401 81% / 94% / 93%

Figure 3: Time measurements (times in ms: total / task-only)

checks, Petri net generation, the first enabled analysis and actual execution can be investigated. For
example, test case 2 spent 27ms for the very first evaluation of the enabled status of all transitions of its
generated Petri net making a total of 1185ms with further Petri net execution excluded. Of this 1185ms,
120ms and 169ms where spent to generate the Petri net and check its well-formedness, 106ms to check
well-formedness of the activity diagram and 763ms to parse the test file and construct an abstract syntax
tree. The activity diagram parsing time includes loading the Larceny virtual machine, RACR and the
activity diagram and non-hierarchical Petri net languages. The percentage of time spent for a certain task
(last column of the first six rows in Figure 3) is w.r.t. a test case’s total execution time if no enabled passes
are used. It is only shown for the test cases with the lowest and highest percentage spent for each task,
highlighted by colouring the time of the respective test case. The average percentage is the sum of all test
cases to perform a certain task divided by the sum of their total execution times. Again, readers should
exclude parsing times when judging RACR. The implementation of a variant with enabled passes requires
three more lines of code. As described in Section 2.2, it just fires all enabled transitions each execution
loop iteration instead of a single. Of course, if there are no forks the enabled pass variant wastes time to
filter all enabled transitions. If there are parallel branches however, enabled passes improve execution
performance a lot. Thanks to the incremental enabled analysis, the execution without enabled passes
nevertheless performs surprisingly well.

Regardless if enabled passes are used or not, the benefits of RACR’s incremental evaluation are
profound (second part of Figure 3). The incremental savings, compared to a non-cached enabled analysis,
vary between 83–95% without and 81–94% with enabled passes. On average 95% and 93% of actual Petri
net execution time are saved respectively. These measurements are not disturbed by dynamic attribute
dependency graph maintenance, since no further attributes used for Petri net execution depend on the
non-cached enabled analysis. The incremental savings would be dramatic if caching is deactivated for
further attributes (for example Petri net name analysis or well-formedness). The benefits of RACR’s
incremental evaluation are also confirmed by the ratio of parsing to interpretation time. At least 45%
of time is spent just to load the Larceny virtual machine and parse the activity diagram; on average
53%! Considering, that the textual diagram language given by the tool contest is simple – a hand-written
recursive decent parser with a single look ahead is used – the amount of time required for all other
activities is very low.



6 fUML Activity Diagrams with RAG-controlled Rewriting

References

[1] Christoff Bürger (2012): RACR: A Scheme Library for Reference Attribute Grammar Controlled Rewriting.
Technical Report TUD-Fl12-09, Lehrstuhl Softwaretechnologie, Technische Universität Dresden. Updated
version distributed with RACR at https://github.com/christoff-buerger/racr.

[2] Christoff Bürger, Sven Karol, Christian Wende & Uwe Aßmann (2011): Reference Attribute Grammars for
Metamodel Semantics. In Brian Malloy, Steffen Staab & Mark van den Brand, editors: Software Language
Engineering: Third International Conference, Lecture Notes in Computer Science 6563, Springer, pp. 22–41.

[3] R. Kent Dybvig (2009): The Scheme Programming Language, 4 edition. MIT Press.

[4] Object Management Group (2013): Semantics of a Foundational Subset for Executable UML Models (fUML).
Technical Report, Object Management Group. Version 1.1.

[5] Görel Hedin (2000): Reference Attributed Grammars. Informatica (Slovenia) 24(3), pp. 301–317.

[6] Tanja Mayerhofer & Manuel Wimmer (2015): The TTC 2015 Model Execution Case. Technical Report,
Business Informatics Group, Vienna University of Technology.

[7] Wolfgang Reisig (2013): Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies.
Springer. English translation of Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien.

[8] Pieter Van Gorp & Steffen Mazanek (2011): SHARE: a web portal for creating and sharing executable research
papers. Procedia Computer Science 4, pp. 589–597.

A Activity Diagram Language

The abstract syntax graph of the activity diagram language corresponds to the metamodel given in the task
description [6, Figure 1].

A.1 Abstract Syntax Tree Scheme

The metaclasses and their composite relations determine the solution’s abstract syntax tree scheme. For
example, the following excerpt of the abstract syntax tree scheme specifies the metaconcepts Activity,
Variable, ActivityEdge and ControlFlow:

1 (ast-rule ’Activity->name-Variable*-ActivityNode*-ActivityEdge*)

2 (ast-rule ’Variable->name-type-initial)

3 (ast-rule ’ActivityEdge->name-source-target)

4 (ast-rule ’ControlFlow:ActivityEdge->guard)

Note, that names starting lowercase on right-hands (following the ->) denote terminal children – i.e.,
ordinary properties – whereas names starting uppercase denote non-terminals – i.e., composite rela-
tions. Unbounded composites (Kleene closures/unbounded repetitions) are denoted by a * following
the respective non-terminal. Analogous to the task description’s metamodel, ControlFlow inherits from
ActivityEdge denoted by :ActivityEdge. By doing so control-flow edges not only inherit the name, source
and target properties of activity edges, but also their attributes and therefore semantic analyses (in terms
of metamodelling the attributes of a reference attribute grammar are derived properties and methods [2]).

A.2 Name, Type and Well-formedness Analyses

The main purpose of the attribute-based semantic analyses of the activity diagram language is, besides the
actual generation of Petri nets, the provision of information convenient for such code generation. This
comprises the construction of a graph structure encoding all information required for code generation

https://github.com/christoff-buerger/racr


Christoff Bürger 7

(name analysis) and checks that ensure diagrams are also valid such that the generated Petri nets do not
misbehave (type and well-formedness analyses).

As a name analysis example consider the association of activity edges with nodes (incoming and
outgoing attribute). To do so, hash maps from node names to their respective incoming and outgoing
edges are constructed. Given these maps, each node can just lookup its own name to determine its edges:

1 (ag-rule

2 incoming ; List of incoming edges of a node.
3 (Activity (lambda (n) (make-connection-table ->target (=edges n))))

4 (ActivityNode (lambda (n) (hashtable-ref (=incoming (<- n)) (->name n) (list)))))

To query an attribute for its value we just write (=attribute-name n); to query an abstract syntax tree
child or parent we just write (->child/terminal-name n) and (<- n) respectively. In all three cases, n is
the context node, i.e., the node the attribute is associated with/the node which has the child/the node
whose parent is queried respectively. The lookup of incoming edges at an activity node n works as follows
(Line 4): get the diagram’s hash table via (=incoming (<- n)) and query it with the activity node’s name;
if it has no entry, return the empty list (the last (list) on Line 4). To construct the actual table (Line 3),
we just call a support function which given an access function -> and list of abstract syntax tree nodes
queries all its elements and adds them to a newly constructed hash table according to their -> values4.
In our case the arguments are just all edges of the diagram (supported by the =edges attribute) and the
target query function ->target. Likewise, the name analysis provides attributes to lookup variables, nodes
and edges (v-lookup, n-lookup and e-lookup attribute), the source and target of edges (source and target

attribute) and the initial node (initial attribute).
Given the name analysis, type analysis is easy to implement (well-typed? attribute). Consider for

example unary expressions, which, according to the metamodel, must be negations:

1 (UnaryExpression

2 (lambda (n)

3 (define ass (=v-lookup n (->assignee n)))

4 (define op (=v-lookup n (->operand1 n)))

5 (and ass op (eq? (->type op) Boolean) (eq? (->type ass) Boolean)))))

First we lookup the variable to write the result to and the negated operand (Lines 3 & 4). Afterwards we
ensure both exist and are indeed of type Boolean (Line 5).

Based on type and name analyses we can check well-formedness. As an example consider decisions
and executable nodes:

1 (DecisionNode (lambda (n) (and (in n = 1) (out n >= 1) (guarded n #t))))

2 (ExecutableNode (lambda (n) (and (in n = 1) (out n = 1) (guarded n #f)

3 (for-all =well-typed? (=expressions n)))))

In both cases we use three support functions. The in and out functions ensure the node has a certain
number of incoming and outgoing edges. The guarded function asserts, depending on its boolean argument,
whether outgoing edges must be control-flows (in case of true they must be, otherwise not). Decisions must
have a unique incoming edge, at least one outgoing edge and their outgoing edges must be control-flows
(Line 1). Executable nodes must have a unique incoming and outgoing edge which is not a control-flow
(Line 2). Furthermore, all their expressions must be type correct (Line 3).

4The implementation is straightforward and based on hashtable-update! provided by Scheme [3].



8 fUML Activity Diagrams with RAG-controlled Rewriting

A	
  A	
  

B	
  

C	
  

J	
  

B	
  

C	
  

J	
  

F	
   A	
  

B	
  

C	
  

A	
  

B	
  

C	
  

F	
  

α	
  

β	
  

γ	
  

α	
  

β	
  

γ	
  

A	
  A	
  

B	
  

C	
  

J	
  

B	
  

C	
  

J	
  

F	
   A	
  

B	
  

C	
  

A	
  

B	
  

C	
  

F	
  

α	
  

β	
  

γ	
  

α	
  

β	
  

γ	
  

(a) fork and join transformation

A	
  

B	
  

C	
  

A	
  

B	
  

C	
  

D	
  D	
  

[a]	
  

[b]	
  

[c]	
  

a	
  

b	
  

c	
  

α	
  

β	
  

γ	
  

α	
  

β	
  

γ	
  

(b) decision transformation

A	
  A	
  

B	
  

C	
  

B	
  

C	
  

N	
  N	
  α	
  

α	
  

α	
  

α	
  

(c) initial, final, merge & executable node transformation

Figure 4: Activity Diagram to Petri net transformation rules c©Christoff Bürger

A.3 Code Generation

A.3.1 Places, Transitions & Arcs

Figure 4 summarises the code generation rules. For each activity node and variable a Petri net place is
constructed (places attribute). In case of variables, the place contains their respective initial value as
token. Otherwise, only the place of the initial node has a token. The general rule for generating transitions
(transitions attribute) is, that given an activity node, a transition is constructed for each of its predecessor
nodes. The transition just consumes a token from the predecessor’s place and puts it into the node’s place
(Figure 4 (c)).

Special means in case of control-flow edges and executable node’s expressions have to be taken
however. Consider Figure 4 (b). In case of control-flow edges, the respective guard must be checked
before any token is consumed. To do so, it is sufficient to lookup the value encoded in the token of the
place which encodes the variable the guard refers to. Further, before a token is placed by an outgoing
arc, all expressions of the node its destination place represents must be executed. In Figure 4, these two
actions are represented by dashed arcs from variable places to guarded input arcs and by Greek letters
representing the expressions to execute.

Forks and joins are exceptions form these default rules however, because of their parallelising and
synchronising semantics. In case of a fork, all its outgoing edges yield a single transition. Likewise, all
incoming edges of a join are translated to a single transition (Figure 4 (a)). As an example consider the
implementation of the transitions attribute of joins:

1 (JoinNode

2 (lambda (n)

3 (define incoming (=incoming n))

4 (list

5 (pn::Transition

6 (->name (car incoming))

7 (map >>? incoming)

8 (list (n>> (car incoming)))))))



Christoff Bürger 9

Based on the join’s incoming edges (Line 3) a new transition named like the ”first” incoming edge is
constructed (Lines 5 & 6). The transition has a single outgoing arc (Line 8) and for each incoming edge of
the join one incoming arc5(Line 7). These arcs are constructed by the >>? and n>> support functions which
given an activity edge construct a new incoming or outgoing arc respectively. Incoming arcs consist of a
single symbolic name referencing the source place the arc is consuming tokens from and a list of functions,
each selecting a token to consume. Outgoing arcs consist of a single symbolic name referencing the target
place the arc is producing tokens to and a single function that given all consumed tokens computes the
produced ones. Consider the construction of incoming arcs via >>?:

1 (define (>>? n) ; Construct incoming Petri net arc for activity edge .
2 (if (ast-subtype? n ’ControlFlow)

3 (pn::Arc (->source n) (list (=v-accessor (=v-lookup n (->guard n)))))

4 (pn::Arc (->source n) (list (lambda (t) #t)))))

First, it is checked if the given activity edge is a control-flow (Line 2). If it is, the consumption function
has to query the value of its guard, i.e., given a consumable token the arc is enabled if, and only if,
the guard’s value is true. To enable the querying of variable values at runtime (i.e., during Petri net
execution), we construct special access functions that return the value of the token of the variable’s place
(v-accessor attribute). In case of a control-flow, >>? therefore finds the guard variable in the activity
diagram via =v-lookup and defines its access function to be the consumption function of the arc (Line 3).
If the argument of >>? is not a control-flow, the consumption function just returns true, i.e., whenever
a consumable token is given the arc is enabled (Line 4). In both cases, the place to consume a token
from is the given activity edge’s source, i.e., (->source n). All of this happens before runtime. When
the generated Petri net is executed the consumption function and source are already settled by the code
generation; no runtime lookup is required.

A.3.2 Variables, Expressions & The Execution of Executable Nodes

As already explained, each variable is translated to a place containing a single token encoding its value.
The v-token attribute refers for each variable to the respective token encoding its runtime value. Its
implementation queries the place representing the variable (places attribute), its list of tokens and finally
the list’s first and only child:

1 (ag-rule

2 v-token ; The Petri net token encoding the runtime value of the variable .
3 (Variable (lambda (n) (ast-child 1 (pn:->Token* (=places n))))))

Remember, that RACR is incremental and caches all attributes. As long as information places depends on
is not changed – like in the given tool contest scenario – it will construct a new Petri net place only the first
time queried; further queries will evaluate to this very place. This caching behaviour holds for all attributes
of the activity diagram language. Based on v-token, implementing v-accessor is straightforward:

1 (ag-rule

2 v-accessor ; Function returning the runtime value of the variable .
3 (Variable (lambda (n) (define token (=v-token n)) (lambda x (pn:->value token)))))

First, lookup the token representing the variable’s value using v-token. Afterwards, return a function in
whose closure the token is and which uses the Petri net language to query its value via pn:->value.

After investigating how runtime values of variables are encoded and can be accessed, it remains to
show how they are changed by expressions. The computation attribute generates for each expression a
function assigning its left-hand the value of its right-hand. For example, consider unary expressions:

5Incoming and outgoing arcs are consuming and producing tokens when a transition is fired respectively.



10 fUML Activity Diagrams with RAG-controlled Rewriting

1 (UnaryExpression

2 (lambda (n)

3 (define assignee (=v-token (=v-lookup n (->assignee n))))

4 (define op1 (=v-accessor (=v-lookup n (->operand1 n))))

5 (define op (->operator n))

6 (lambda () (rewrite-terminal ’value assignee (op (op1))))))

First, the token representing the assignee is looked up (Line 3); afterwards, the access function of the
operand variable and the operation to perform (Lines 4 & 5). These information are the closure of the
function to construct. The function itself uses RACR’s rewrite-terminal function to change the value
of the assignee to the one computed by applying the operator on the value the operand’s value access
function returns (Line 6). Again, all lookups are at generation time of the Petri net and not runtime.

The computation attribute is defined for every activity node. It generates a function whose execution
represents the execution of the respective activity node at runtime. This comprises three runtime actions:
(1) tracing the node’s execution, (2) computing its expressions if any (i.e., if the node is an executable
node) and (3) establishing its offers for successor nodes:

1 (ActivityNode

2 (lambda (n)

3 (define executed (->name n))

4 (lambda x (trace executed) (list #t))))

5 (ExecutableNode

6 (lambda (n)

7 (define executed (->name n))

8 (define computations (map =computation (=expressions n)))

9 (lambda x (trace executed) (for-each (lambda (f) (f)) computations) (list #t))))

Note, that the computation functions generated by the computation attribute accept arbitrary many argu-
ments and always return a singleton list with element true. Their tracing and expression execution is
obvious (Lines 4 & 9); how token offers are established we still have to clarify however.

As already explained, for each activity node a place is generated. A token in such a place indicates
that the activity node provides an offer to its successors. According to the semantics of activity diagrams,
the offers of an activity edge are provided immediately after executing its expressions. The computation
function of an activity node therefore has to be executed immediately before a token is put into its
respective place, i.e., whenever an outgoing arc of a transition places a token in its place. Thus, outgoing
arcs must apply the computation function of their target. The implementation of >>n therefore is:

1 (define (n>> n) ; Construct outgoing Petri net arc for activity edge .
2 (pn::Arc (->target n) (=computation (=target n))))

As explained before, an outgoing arc consists of a symbolic name referencing the target place and a
production function that given the consumed tokens computes the ones placed in its target place. The
functions generated by the computation attribute are valid production functions; they accept arbitrary many
consumed tokens and place a single true token.


	Prerequisites and Contents
	Solution Overview
	RAG-based Analyses: From Activity Diagrams to Petri Nets
	Rewriting-based Transformations: Incremental Execution of Petri Nets

	Evaluation
	Activity Diagram Language
	Abstract Syntax Tree Scheme
	Name, Type and Well-formedness Analyses
	Code Generation
	Places, Transitions & Arcs
	Variables, Expressions & The Execution of Executable Nodes



