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8th	Transforma(on	Tool	Contest	

activity diagram one by one. Control tokens and offers of control tokens are shown in
orange color. Forked tokens and offers of forked tokens are shown in blue color. Up-
dates of important features are also highlighted in color. The execution is shown until
the execution of the action manager interview. The complete trace of the example is as
follows: initial node initial - opaque action register - decision node decision - opaque
action get welcome package - fork node fork - opaque action assign to project - opaque
action add to website - join node join - opaque action manager interview - opaque ac-
tion manager report - merge node merge - opaque action authorize payment - activity
final node final. Please note, that the opaque actions assign to project and add to website
could also be executed in reverse order.
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Fig. 4. Example activity diagram (UML notation)

2.4 Variations

As the presented UML activity diagram language is quite extensive, solution devel-
opers may choose to implement it only partially. We foresee the following three case
variations.

Variant 1: Simple Control Flow. The first variant considers only the following concepts
of the UML activity diagram language: Activity, initial node, activity final node, opaque
action (without expressions), control flow edge. This means that only the operational
semantics of these concepts has to be implemented by solution developers choosing this
case variant. The following runtime concepts have to be implemented for this variant:
Offer, token, control token, trace. We consider this subset of concepts to be the minimal
one that should be implemented by all solution developers.

Variant 2: Complex Control Flow. The second variant considers compared to the first
variant the following additional concepts: Fork node, join node, decision node, merge
node, local Boolean variables, and Boolean values. Only the runtime concept forked to-
ken as well as current values of Boolean variables have to be implemented additionally
compared to the first variant.

=	true	

Task:	execu1on	of	fUML	Ac(vity	Diagrams.	
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1. The variables are initialized, the nodes are set as running, the initial node is executed leading to the creation of the control 
token c1 offered to the action register. 

2. The action register consumes the token c1, executes the defined expression leading to an update of the variable non-internal,
creates the control token c2, and offers it to the decision node decision.

3. The decision node decision offers the control token c2 to the opaque action get welcome package, because the variable internal 
defined as guard condition has the current value true.

4. The action get welcome package consumes the control token c2,  produces the control token c3, and offers it to the fork node.

5. The fork node fork produces the forked token c4 for the incoming control token c3 (i.e., the forked token’s base token). The 
remaining offers count is set to 2, because the fork node has two outgoing control flow edges. The forked token c4 is offered to
the successor actions via two distinct offers.

6. The action assign to project consumes its token offer for c4 leading to an update of c4’s remaining offers count to 1, produces 
the control token c5, and offers it to the join node join.

7. The action add to website consumes its token offer for c4 leading to an update of c4’s remaining offers count to 0, which in turn 
leads to the withdrawal of c4 (holder is set to null). Furthermore, it produces the control token c6, and offers it to the join node.

8. The join node join offers the incoming tokens c6 and c7 via one offer to the action manager interview.

9. The action manager interview consumes the control tokens c5 and c6,  produces the control token c7, and offers it to the action 
manager report.

Fig. 6. Visualization of the execution of the example activity diagram (part 2)
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1. The variables are initialized, the nodes are set as running, the initial node is executed leading to the creation of the control 
token c1 offered to the action register. 

2. The action register consumes the token c1, executes the defined expression leading to an update of the variable non-internal,
creates the control token c2, and offers it to the decision node decision.

3. The decision node decision offers the control token c2 to the opaque action get welcome package, because the variable internal 
defined as guard condition has the current value true.

4. The action get welcome package consumes the control token c2,  produces the control token c3, and offers it to the fork node.

5. The fork node fork produces the forked token c4 for the incoming control token c3 (i.e., the forked token’s base token). The 
remaining offers count is set to 2, because the fork node has two outgoing control flow edges. The forked token c4 is offered to
the successor actions via two distinct offers.

6. The action assign to project consumes its token offer for c4 leading to an update of c4’s remaining offers count to 1, produces 
the control token c5, and offers it to the join node join.

7. The action add to website consumes its token offer for c4 leading to an update of c4’s remaining offers count to 0, which in turn 
leads to the withdrawal of c4 (holder is set to null). Furthermore, it produces the control token c6, and offers it to the join node.

8. The join node join offers the incoming tokens c6 and c7 via one offer to the action manager interview.

9. The action manager interview consumes the control tokens c5 and c6,  produces the control token c7, and offers it to the action 
manager report.
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Fig. 5. Visualization of the execution of the example activity diagram (part 1)
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General	solu1on	idea	

Interpreter	consis1ng	of	two	parts	…	
– Ac(vity	Diagram	à	Petri	net	compiler	(analyses)	
– Petri	net	interpreter	(state	transforma1ons)	

…	implemented	using	RAG-controlled	rewri1ng.	



RAG-controlled	rewri1ng	
•  RAG-controlled	rewri1ng	=	RAGs	+	graph	rewri1ng	
–  reference	a=ribute	grammar	for	declara1ve	analyses	

•  reference	a=ributes	induce	seman1c	overlay	graph	on	top	of	
abstract	syntax	tree	(AST)	>>	extend	AST	to	ASG	

•  enables	deduc1on	and	analyses	of	graph	structure	
>>	deduced,	memoized	abstract	syntax	graph	(ASG)	

–  graph	rewri1ng	for	declara1ve	ASG	transforma1ons	
•  leQ	hand:	ASG	pa=ern	(ASTs	connected	via	reference	a=ributes)	
•  right	hand:	manipula1ons	on	matched,	underlying	AST	
>>	ASG	changes	with	AST	(updated	by	RAG)	

–  seamless	combina1on:	
•  use	of	analyses	to	deduce	rewrites	
•  rewrites	automa1cally	update	analyses	
>>	incremental	

mutual	control	



RACR	

•  reference	implementa1on	of	RAG-controlled	
rewri1ng	in	Scheme	

•  R6RS	library;	API	for:	
– ASG	schema	defini1on	(AST	schema	+	a=ribu1on)	
– ASG	querying	(AST	+	a=ributes)	
–  rewri1ng	(impera1ve/RAG-controlled/fixpoint;	
primi1ve/pa=ern-based;	or	combina1on	of	all)	

h=ps://github.com/christoff-buerger/racr	
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fUML	Ac(vity	Diagram	compiler	

•  a=ributes	for:	
– name	analysis	(symbolic	name	resolu1on)	
•  incoming	&	outgoing	edges	
•  variables	

–  type	analysis	(expression	types)	
– well-formedness	analysis	(only	TTC	solu1on	that	
rejects	malformed	diagrams)	

– code	genera1on	(i.e.,	Petri	net	genera1on)	

reference	a=ributes	



fUML	Ac(vity	Diagram	à	Petri	net	
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fUML	Ac(vity	Diagram	à	Petri	net	
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Petri	net	interpreter	

•  a=ributes	for:	
– name	analysis	
– well-formedness	analysis	
– enabled	analysis	(kind	of	name	analysis)	

•  rewrites	for	execu1on	(firing)	
– delete	consumed	tokens	
– add	produced	tokens	

reuse	



Abstract	syntax	graph	
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Execu1on	(RAG-controlled	rewri1ng)	
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Execu1on	(RAG-controlled	rewri1ng)	
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Evalua1on	



Implementa1on	quality	

•  straighYorward	rewri1ng	thanks	to	a=ribute-
based	analysis	(rewrites	leverage	on	analyses)	

•  focused	rewri1ng	(just	actual	state	changes)	
•  efficient,	although	naïvely	specified	(incremental)	
•  declara1ve	(automa1c	deduc1on	of	evalua1on	
orders	for	intertwined	analyses	&	rewri1ng)	

•  interac1ve	(convenient	run1me	API	for	user-
driven	analyses	&	state	changes)	



Lines	of	code	

no	further	soQware	artefacts	

4 fUML Activity Diagrams with RAG-controlled Rewriting

Source code file Solution part (language task) LOC

Activity Diagram interpreter (584): 548
analyses.scm: 308 AST scheme 16 3%

ASG accessors (constructors, child & attribute accessors) 89 16%
Name analysis 36 7%
Type analysis 21 4%
Well-formedness 30 5%
Petri net generation 94 17%

parser.scm: 234 Parsing 229 42%
user-interface.scm: 42 Initialisation & command-line interface 33 6%

Petri net interpreter (243): 222
analyses.scm: 134 AST scheme 6 3%

ASG accessors (constructors, child & attribute accessors) 34 15%
Query support 12 5%
Name analysis 19 9%
Well-formedness 12 5%
Enabled analysis 38 17%

user-interface.scm: 109 Initialisation and Petri net syntax 32 15%
Running and firing interface 14 6%
Read-eval-print-loop interpreter 23 10%
Testing (marking & enabled status) 32 15%

Figure 2: Solution size (in lines of code, LOC)

3 Evaluation

Development-effort-benchmarks Figure 2 summarises the size of the implementation in terms of lines of
code, excluding empty lines and pure comments. The difference between the size of the solution parts and
their source code files is due to boilerplate code for library imports and exports not being accountable to
any certain task. Also, the abstract syntax graph accessors are boilerplate code that could be generated and
should not be counted. They are mostly one liners to introduce convenient functions for node constructions
and child and attribute querying. For example, in the listings of Appendix A we will write (->target n)

to query the target of an activity edge. RACR provides generic query functions however, such that the
query would be (ast-child ’target n) (cf. reference manual [1, Chapter: Abstract Syntax Trees]). To this
end we specify the abstract syntax graph access function (define (->target n) (ast-child ’target n))

which is obviously boilerplate. Finally, note that the implementation of user interface functionality makes
up huge parts of the implementation (in case of the activity diagram language 48%; for the Petri net
language 46%). To develop language user interfaces is not subject of RACR however; input parsing and
abstract syntax tree instantiation therefore should also be excluded.
Performance-benchmarks Figure 3 presents the results of benchmarking the performance test cases
given by the tool contest. The benchmarks have been executed on a MacBook Air (Mid 2011) with a
1.7GHz Intel Core i5 CPU, 4GB 1333MHz DDR3 RAM and Mac OS 10.11.5. As Scheme system Larceny
0.98 (General Ripper)3 was used. Times were measured using the time command of UNIX without
warming up the Larceny virtual machine just by execution from Bash. Each test case was performed with
increasing numbers of translation tasks, such that the actual times spent for parsing, well-formedness

3
http://www.larcenists.org and https://github.com/larcenists/larceny



Performance	

execu1on	1mes	in	ms	
(cf.	solu1on	descrip1on)	

Christoff B¨urger 5

Tasks performed Test case Time spent
(later include previous) 1 2 3 1 3 2 (low / high / average)

Activity diagram parsing 762 / 762 763 / 763 797 / 797 641 / 641 45% / 92% / 53%
Activity diagram well-formedness 859 / 97 869 / 106 983 / 186 643 / 2 0% / 11% / 7%
Petri net generation 973 / 114 989 / 120 1125 / 142 647 / 4 1% / 8% / 7%
Petri net well-formedness 1141 / 168 1158 / 169 1296 / 171 655 / 8 1% / 11% / 9%
Petri net enabled 1167 / 26 1185 / 27 1376 / 80 656 / 1 0% / 5% / 2%
Petri net execution... 1617 / 450 1555 / 370 1768 / 392 699 / 43 6% / 28% / 22%
...using enabled passes 2274 / 1107 1229 / 44 1462 / 86 718 / 62 4% / 49% / 23%

Incremental savings (enabled analyses not cached) (low / high / average)

Petri net execution... 9894 / 8727 8171 / 6986 8707 / 7331 916 / 260 83% / 95% / 95%
...using enabled passes 18889 / 17722 1536 / 351 1818 / 442 1057 / 401 81% / 94% / 93%

Figure 3: Time measurements (times in ms: total / task-only)

checks, Petri net generation, the first enabled analysis and actual execution can be investigated. For
example, test case 2 spent 27ms for the very first evaluation of the enabled status of all transitions of its
generated Petri net making a total of 1185ms with further Petri net execution excluded. Of this 1185ms,
120ms and 169ms where spent to generate the Petri net and check its well-formedness, 106ms to check
well-formedness of the activity diagram and 763ms to parse the test file and construct an abstract syntax
tree. The activity diagram parsing time includes loading the Larceny virtual machine, RACR and the
activity diagram and non-hierarchical Petri net languages. The percentage of time spent for a certain task
(last column of the first six rows in Figure 3) is w.r.t. a test case’s total execution time if no enabled passes
are used. It is only shown for the test cases with the lowest and highest percentage spent for each task,
highlighted by colouring the time of the respective test case. The average percentage is the sum of all test
cases to perform a certain task divided by the sum of their total execution times. Again, readers should
exclude parsing times when judging RACR. The implementation of a variant with enabled passes requires
three more lines of code. As described in Section 2.2, it just fires all enabled transitions each execution
loop iteration instead of a single. Of course, if there are no forks the enabled pass variant wastes time to
filter all enabled transitions. If there are parallel branches however, enabled passes improve execution
performance a lot. Thanks to the incremental enabled analysis, the execution without enabled passes
nevertheless performs surprisingly well.

Regardless if enabled passes are used or not, the benefits of RACR’s incremental evaluation are
profound (second part of Figure 3). The incremental savings, compared to a non-cached enabled analysis,
vary between 83–95% without and 81–94% with enabled passes. On average 95% and 93% of actual Petri
net execution time are saved respectively. These measurements are not disturbed by dynamic attribute
dependency graph maintenance, since no further attributes used for Petri net execution depend on the
non-cached enabled analysis. The incremental savings would be dramatic if caching is deactivated for
further attributes (for example Petri net name analysis or well-formedness). The benefits of RACR’s
incremental evaluation are also confirmed by the ratio of parsing to interpretation time. At least 45%
of time is spent just to load the Larceny virtual machine and parse the activity diagram; on average
53%! Considering, that the textual diagram language given by the tool contest is simple – a hand-written
recursive decent parser with a single look ahead is used – the amount of time required for all other
activities is very low.

1me	saved	by	
incremental	
evalua1on	



Conclusion	



Benefits	of	RAG-controlled	rewri1ng	
interac1ve	 run1me	models	

model	transforma1on	
incremental	reasoning	

incremental	
meta	programming	 IDEs	

…	

…	

declara1ve	
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Programmed	/	
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