
3. Dynamic Attribute Dependency Analyses for Incremental RAG Evaluation

ChangeV
alu

e(n
,i,v

)

Refin
e(n

,t,c
∗ )

Abstract(n
,t)

AddElement(l
,n)

Insert
Element(l

,i,n
)

DeleteElement(n
)

Repla
ceSubtree(n

,n)
Co

nt
ex
t

Not AST Node × × × × × × ×
Bud-Node × × × × × ×
List-Node × × × ×
Not List-Node × ×
Not Element of List-Node ×

Ne
w

No
de
(s
) Wrong Number ×

Do not fit × × × ×
No Root(s) × × × ×
Context is in Subtree × × × ×

Ne
w

Ty
pe

Not AST Node Type × ×
Not Subtype of Context ×
Not Supertype of Context ×
Does not fit in Context ×

Attribute(s) in Evaluation × × × × × × ×
Child does not exist × ×
Child is AST Node ×

Context: n, l New Nodes: c∗, n′ New Type: t

Figure 3.1.: Error Cases of Rewrite Functions

can yield graphs instead of ASTs. The former restriction is because of confluence issues
described in Section ??, the latter because the insertion of a node into several ASTs, several
places within a single AST or its own subtree is undefined. Figure 3.1 summarises the cases
when rewrite functions are undefined.

3.2.2. Query Function Definitions

Algorithms 3.1 and 3.2 present the implementations of the query functions. As describedDependency Graph
Construction
(Alg. 3.1, 3.2)

above, their main objective is to construct a dynamic attribute dependency graph that can
be used to determine the attribute instances or even cache entries rewrites influence. To
that end, query functions add depedency edges of certain types when applied. The source of
a dependency to add always is the attribute instance currently in evaluation or one of its
cache entries respectively, depending on, whether dependencies consider attribute parameters
or not. To track the attribute instance/cache entry currently in evaluation, the attribute
query and evaluation function Att maintains an evaluation stack. Every time an attribute
instance has to be evaluated, it pushes the instance or its respective cache entry on the stack

44


